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Abstract 
By employing Sagdeev‟s pseudopotential technique large amplitude solitary waves are investigated in ultra-relativistic degenerate 

quantum plasma containing electrons and ions. The effect of relativistic degeneracy, quantum diffraction, ion temperature has 

important contribution in determining the nature of pseudopotential well. They also determine the formation and properties of ion 

acoustic waves in this two-component electron-ion dense quantum plasma.   
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I. INTRODUCTION 

The Plasma itself is a complex system and shows a no of 

linear & nonlinear effects [1, 2]. Ion acoustic wave (IAW) is 

one such important phenomenon. It can exist as a solitary wave 

in a steady state situation. Solitary waves of small amplitudes 

as well as double layers are investigated by using reductive 

perturbation technique. On the contrary large amplitudes 

solitary waves is generally investigated by using Sagdeev‟s 

pseudopotential method [3, 4]. 

Recently researches in quantum plasma have developed 

very fast because of its application in astrophysical as well as 

laboratory plasmas [5, 6]. Quantum plasma is characterized by 

low temperature and high density that causes the overlapping of 

thermal de Broglie wavelengths that give rise to quantum 

effects. Quantum plasma finds applications in semi conductor 

nano devices [7], quantum walls [8], CNTs [9], ultra cold 

plasmas [10], micro electronics [11], biophotonics [12] intense 

laser solid interaction [13] etc. In astrophysical environment 

super dense plasmas have been observed, namely in white 

dwarf, neutron star [14] etc. Several authors have studied 

different aspects of such ultracold dense plasmas with the 

pioneering works of  Haas [15], Manfredi [16], Shukla [17], 

Eliasson [18], Brodin, Marklund [19, 20] & others [21 -24]. 

Quantum plasma has gained much popularity in recent years. 

By applying quantum hydrodynamic model (QHD) [15] the 

mathematical intricacies have become quite easier to explore. 

In the recent years solitary waves have been investigated in 

electron acoustic wave by Chandra et al [25, 26]. In a 

relativistically degenerate quantum plasma. Modulation 

instability and small amplitude solitary structure has also been 

investigated by many authors [27, 28]. Finite temperature effect 

[29, 30] & relativistic drifts [31, 32] has also been considered 

by some. Quantum drift waves have been studied by Shokri and 

Rakhadzem [33] using kinetic theory approach. Haque & 

Masood [34] have studied drifts solitons in quantum magneto 

plasma. Ourabah and Tribeche [35] have investigated the effect 

of exchange correlation in quantum ion acoustic waves. Kinetic 

viscosity in electron ion quantum plasma has been studied by 

Sahu & Roychoudhury [36].  

Ion acoustic solitary waves (ISAW) have been studied by 

many authors [37-42, 43-45]. Nonlinear IAW in a one 

dimensional collisionless, unmagnetised quantum  plasma has 

been investigated by Haas et-al. [46] by incorporating Bohm 

potential & quantum statistical pressure (using FD distribution) 

Misra & Bhowmik [38] studied the nonlinear IAWs in quantum 

plasma in spherical geometry by applying Kodomstev-

Petviasville (KP) equation by using Zakharov-Kuznetsov 

equation in the quantum regime. IAWs have been investigated 

in quantum magneto plasma by Moslem et-al. [39]. The 

inclusion of dust in ion acoustic solitary wave have also been 

carried out by some authors [41].using Korteweg de-Vries 

(KdV) equation has been used by Masood et al [42]. Most of 

these works are done using reductive perturbation technique 

which a valid for small amplitude waves in order to investigate 

large amplitude solitary structure. It is necessary to analyze the 

exact solitary waves in which the total nonlinearity of the 

system is considered without any approximation. In plasma 

Sagdeev‟s pseudopotential is one such method which is widely 

used in various plasma models [47-49].Ion acoustic solitary 

waves in unmagnetised electron plasma has been studied by 

Masood & Mushtaq [43] using Sagdeev‟s  pseudopotential 
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approach. In their investigation they have neglected the ion 

temp which has finite effect in the formation and properties of 

ion acoustic solitary waves. The findings of Ali et al [44] have 

given much more insight to the properties of IAWs. He also 

neglected the effect of ion temperature. 

In ultra dense matter the presence of relativistic degeneracy 

effects is given by Chandrasekhar in 1939 [50]. The expression 

given by him has been applied in quantum plasmas by Akbari-

Moghanjoughi [51], El-Labany [52], Mamun and Shukla [53], 

Chandra et al. [25, 26]. Most of the work in ion acoustic waves 

including relativistic degeneracy effects were limited to small 

amplitude waves for which reductive perturbation technique is 

generally used. Large amplitude waves in such relativistic 

quantum plasma have so far to our knowledge has not been 

investigated. The motivation of the present paper is to study the 

large amplitude ion acoustic solitary structure ultra relativistic 

degenerate electron ion plasma by employing Sagdeev‟s 

pseudopotential method.  

The paper is organized in the following way; in section 

two, the basic dynamic equations of the system using QHD 

model are introduced with proper justifications. It also derives 

the expression for pseudopotential U(n) in terms of n. The third 

section investigates the solitary properties of ion acoustic wave 

and its dependence of different parameters. Finally we discuss 

our results and came to a conclusion. 

. 

II. BASIC EQUATIONS 

Let us consider the homogeneous and unmagnetised 

electron-ion quantum plasma. In quantum plasma the effect of 

ion temperature on the IAW is studied by assuming the 

electrons to be inertialess & the ions are taken to be inertial. 

The phase velocity of the wave is taken to be 

/Fi FeV k V   (where VFi and VFe are the Fermi velocities 

of ions and electrons respectively). Ion pressure effects due to 

ion Fermi temperature can therefore be ignored. The basic 

dynamic equations ignoring the non-linear mechanisms of ion 

acoustic waves in quantum plasmas are given in the 

dimensional (unnormalised) form as; 
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Here nj, vj, mj, −e are the density, velocity field, mass, and 

charge, respectively where j =e, i stands for electrons and 

ions.  Meanwhile, ħ=h/2π is the reduced Planck constant, ф is 

the electrostatic wave potential,  pe  is the electron pressure, 

and  1 3 /Ei FeT T   is the ion-to-electron Fermi Temperature 

ratio, where TFj is the Fermi temperature of the jth species. At 

equilibrium, we have ni0=ne0=n0. Following Chandrasekhar 

(1939) the electron degeneracy pressure in fully degenerate 

and relativistic configuration can be expressed in the 

following form: 
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the speed of light in vacuum.  
Fjp  is the electron Fermi 

relativistic momentum. It is to be noted that in the limits of 

very large values of relativity parameter eR  (the ultra 

relativistic case) we obtain: 
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Note that the degenerate electron pressure depends only 

on the electron number density but not on the electron 

temperature.  

Now, let us assume   
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So;
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Now putting (8) in the equation (3) and using the 

following normalization: 
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of normalized (dimensionless) equations are given as: 
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in which 2

04 /e e en e m  is the plasma frequency, 

2 /s B Fe ec k T m is the quantum ion-acoustic speed. H is the 

non-dimensional quantum diffraction parameter defined as

/ 2ec B FehH k T  , where TFe is the Fermi temperatures for 

electrons. 

In order to get localized stationary solution, let us assume 

that all dependent variables are functions of single 

independent variable:  
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where M is the Mach number defined by v/cs, v is the velocity 

of the nonlinear waveform moving with the frame. 

By integrating (12) once and applying boundary 

conditions 1en   & 0   at   ; we obtain
: 
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From the ion continuity equation (11) and ion momentum 

equation (13) with proper boundary 
conditions 
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Substituting equation (17) in (18) we get, 
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Now by employing quasi-neutrality conditions   
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and also substituting Z n , from equations (16-19) we 

obtain  
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Multiplying both sides of equation (21) by dz d  and 

integrating with the boundary condition " 0n   and ' 0n   

and 0n  , (where primes represent derivatives with respect 

to ξ) we obtain the nonlinear differential equation in terms of 

density as: 

1
( ) 0

2

dn
u n

d

 
  

 
                                                  (22) 

Where, the Sagdeev‟s pseudopotential is defined as 

equation:   
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Equation (23) is called the energy integral of an 

oscillatory particle of mass unity moving with a velocity 

'n dn d   at position n in a potential well U(n).  It has 
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similar expression as found by Chatterjee et al. [54]. If the ion 

temperature is neglected the equation (23) agrees with 

equation (19) as reported by Mahmood & Mustaque [43]. 

The dependence of the pseudopotential on different 

plasma parameters (viz. F, H and σ) is shown in Figures 1-6.  

Fig. 1: U (n) is plotted vs. n for different values of Relativistic 

degeneracy parameter F in an ultra relativistic plasma, The 

black curve denotes F=2/3, the red curve denotes F=1, the blue 

curve denotes F=4/3. Other parameters are M=0.6, H=6 & σ=0.1. 

Fig. 2: U (n) is plotted vs. n for different values of Relativistic 

degeneracy parameter F in ultra-relativistic plasma, the black 

curve denotes F=2/3, the red curve denotes F=1, the blue curve 
denotes F=4/3. Other parameters are M=0.6, H=6 & σ=1.2. 

In Figure 1 it is found that with cold ions ( =0.1), the 

potential well becomes more deep with increase in relativistic 

degeneracy parameter F. However if the ions are warmer than 

the electrons the potential well becomes deeper with similar 

value of the relativistic parameter F as shown in Figure 2.  

The dependence of quantum diffraction parameter H on 

the properties of the pseudopotential well is shown in Figures 

3 and 4.   

Fig. 3: U (n) is plotted vs. n for different values of Quantum 

diffraction parameter H in ultra relativistic plasma, the black 

curve denotes H=2, the red curve denotes H=4, the black curve 

denotes H=6. Other parameters are M=0.6, F=2/3 & σ=0.1. 

 

 

In Figure 3 it is found that there exists two regions in the 

potential curve plot; for values of n from 0 to a finite one 

(around 0.24=nm).The potential curve decreases with H. In the 
next region that is (from nm to 1) the lower most point of the 

potential well decreases in depth with increase in H. Figure 4 

shows the same plot for warmer ions with similar features but 

with the only characteristics that it becomes more deeper in 

this case.  

Fig. 4: U (n) is plotted vs. n for different values of Quantum 

diffraction parameter H in ultra-relativistic plasma, the black 

curve denotes H=2, the red curve denotes H=4, the black curve 
denotes H=6. Other parameters are M=0.6, F=2/3 & σ=1.2. 
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Fig. 5: U (n) is plotted vs. n for different values of ion 

temperature ratio σ in ultra-relativistic plasma, the black curve 

denotes σ =0.1, the red curve denotes σ =0.2, the black curve 

denotes σ =0.3. Other parameters are M=0.6, F=2/3 & H=2. 

 

Figures 5 and 6 shows the pseudopotential well profile for 

different values of  both for cold and warm ions. It is found 

that with increase in the parameter  (which is directly 

proportional to ion Fermi temperature) for cold ions the depth 

of the potential slightly increases, (Figure 5). For warmer ions 

the depth of U(n) increases in   (Figure 6). Thus it is found 

that the relativistic degeneracy parameters (F) & ion 

temperature ratio ( ) has similar effects throughout. But 

quantum diffraction parameter H shows dual characteristics in 

two different regimes in density space. 

Fig. 6: U (n) is plotted vs. n for different values of ion 

temperature ratio σ in ultra relativistic plasma, the black curve 

denotes σ =1.25, the red curve denotes σ =1.5, the black curve 

denotes σ =2. Other parameters are M=0.6, F=2/3 & H=2. 

III. SOLITARY WAVE SOLUTIONS 

The motion of a particle whose Sagdeev‟s 

pseudopotential well U(n) which is a function of n is 

described by Eq. (23). The characteristics of the 

pseudopotential U(n) will then decide the conditions for the 

existence of solitary wave solution. If it is found that between 

any two roots (in this case, 0 and nm) of the pseudopotential, 

U(n) is negative, then an oscillatory wave is found. On the 

reverse, if in the interval one root is a single root and another 

is a double root, then a solitary wave can be predicted [2]. If 

both the roots are double root, then a double layer exists. The 

initial conditions are chosen such that the double root appears 

at n=1. Therefore it takes an infinitely long time to get away 

from it and n reaches a zero at nm, then again taking infinitely 

long time to return to n=0. Hence, the conditions for the 

existence of soliton solution are the following: 

a)   0U n   at n=1 and n=nm, 

b) 
( )

0
dU n

dn
  at n=1 but 

( )
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dU n

dn
 at mn n  and, 
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2

2

( )
0

d U n
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If nm is less than one then rarefractive solitary wave 

structures are formed. On the other hand if it is greater than 

unity, then compressive structures are obtained. It is to be 

noted that complex U(n) is not physically allowed as it would 

imply complex density which is not physical. From equation 

(23), it is seen that the shape of the solitary structures can be 

determined from the following: 

 2
m

n

n

dn

U n
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


           

(24) 

The solitary profile obtained from integrating the reciprocal of 

the square root of the negative value of the pseudopotential 

between the two roots (visually nm and unity in this case). The 

effect of relativistic degeneracy parameter (Figure 7), 

quantum diffraction parameter (Figure 8) & ion temperature 

(Figure 9) on the formation and properties of ion acoustic 

solitons are investigated are investigated.  

Figures 7-9 shows the dependence of the solitary profiles 

containing colder ions & comparatively warmer electrons (in 

terms of Fermi temperature) on the relativistic degeneracy 

parameter F, quantum diffraction parameter H and ion-to-

electron Fermi temperature ratio  on the solitary structures 

of ion acoustic waves. The solitary profile show features 
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typical in this case where there is a small protruding tip at 

=0.  

Fig. 7: n is plotted vs. ξ in ultra relativistic plasma with variation 

of Relativistic Degeneracy parameter F. The blue curve denotes 

F=2/3, the red curve denotes F=1, the black curve denotes F=4/3; 

other parameters are M=0.6, H=2 & σ=0.1. 

  

Fig. 8: n is plotted vs. ξ in ultra relativistic plasma with variation 

of quantum diffraction parameter H. The blue curve denotes 

H=2, the red curve denotes H=4, the black curve denotes H=6. 

Other parameters are M=0.6, F=2/3 & σ=0.1. 

Figure 7 shows the rarefractive solitary structures for 

variation in relativistic degeneracy parameter F. It is found 

that as F increases the solitary structures become narrower 

keeping the amplitude constant. Figure 8 shows the same for 

variations in quantum diffraction parameter H. In this case it 

is found that with enhancement of quantum diffraction effect 

the solitary profile becomes much wider in contrast to that of 

Figure 7. 

 

Figure 9: n is plotted vs. ξ in ultra relativistic plasma with 

variation of ion temperature ratio σ. The blue curve denotes        

σ =0.1, the red curve denotes σ =0.2, the black curve denotes       

σ =0.3; other parameters are M=0.6, F=2/3 & H=2. 

 

Figure 9 depicts the dependency of solitary profile on ion 

Fermi temperature ( ). It is found that the relative amplitude 

increases with increasing   but the waves decreases. With 

warmer ions the features will be similar as can be predicted by 

observing the pseudopotential well profiles U(n) [Figures 2, 4, 

6].  

 

IV. CONCLUSION & REMARKS 

In these paper large amplitude ion acoustic solitary 

structures has been investigated in a two component electron 

ion quantum plasma containing ultra relativistically 

degenerate electron & non relativistic ions. The dependency of 

Sagdeev‟s pseudopotential on relativistic degeneracy 

parameter, quantum diffraction parameter & ion Fermi 

temperature are investigated & from this information the 

feasibility for obtaining ion acoustic solitary structures are 

investigated. It is found that all three of the parameters (F, H 

& ) have significant effect in determining the properties of 

ion acoustic waves. The results found here may be helpful in 

explaining different kinds of wave phenomenon observed in 

space plasma and astrophysical environments. 
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